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THEORY OF THE CLIMBING KNOT 

By William T. Plummer 

Abstract 

Starting from simplest ideas a mathematical study leads to a quantitative result for the 
holding power of a climbing knot. Application is made for the case of the prusik knot and for 
a few other knots in use. A new knot is presented which will hold on any rope, no matter how 
slippery. Considerations governing the choice of sling material are derived. It is found that a 
slippery rope is most easily climbed with slippery slings. _ 

Treatment of a Fixed Loop 

l . The main rope is replac d by a smooth, rigid cylinder. 
The following simplific~ions are made. The validity of each will be discussed later. 

2. The sling material is c mpletely limp and weightless, but is rigid with respect to a twist 
about its axis. 

3. The sling rope is of muqh smaller diameter than the rope which is to be climbed. 

Let us consider the verytsimplest sort of "knot" which could be used. This is a fixed loop 
of cord a little larger than th cylinder. When such a loop supports weight W, the point of sup
port will be a cusp in the loo . Both branches will lie at some angle e above the horizontal. The 
actual curve formed by the loop is more complicated than it looks, but may be found. It will 
be shown that a loop large< than a definite size will not grip the cylinder, but a loop of any 
smaller size will. This critical loop size may be characterized by its angle, e. 

W is 
attached here 

. We have to use some kind of coordinate system. Looking down on the cylinder, the angle 
. --.. () designates a direction out from the center. We may let () be zero at the point where the 

weight W is supported, and it will then equal 1r radians (or 180°) around back at the most dis
tant point. By stating a value for(), we refer to a particular point on the loop. 
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One other angle which is important is the tilt 9f the sling rope, the loop, at each value of 
8. We see that this angle, c/>, is equal to e at 8=0, and decreases to 0 at 8=-rr, around back where 
the sling l9op is horizontal. 

T-AT 

T 

Now look at a very short segment of the loop, at an arbitrary position 8. The little piece 
extends across a small angle !:iJ as shown. We may draw a set of axes right at the segment and 
show its form. The tensions upon its ends are T and T-~T. acting at the angles named. The 

quantity ~T is the change in tension from one end of the little piece to the other, and ~cf> is 
the change in tilt from one end to the other. Since the segment is short, both changes may be 
considered very small. 

In the plane tangent to the1cylinder at the position 8, there is a force M which is perpendi
cular to the sling and accounts for the curvature.6T and Mare in this plane. To find the values 
of ~T and M we must approach Fhe problem a little differently. 

In general a short element of the loop may be represented as a small arc of a circle. Thls 
arc, at any point of the loop, will determine a "plane of curvature." In general, this plane is not 
the same as the plane tangent tq the cylinder. In the next few steps we shall find the true plane 
of curvature at an arbitrary 0. . 

In the plane of the arc, the angle between the directions of the ends of the element is 6"(. 
With a little solid geometry, we tmd that: 

.llB Cos (lJ 

62 

(~'Y)2 = (M)2 cos2 cf> + (~4>)2 

6'Y =.../(~8)2 cos2 4>+(6cf>)2 

= !cos2 cf> + (__lliL) 2 HJ dB 



Then in the plane of curvature, we have a. situation like this: Here 6G is the force that is 
perpendicular to the element of the loop and causes the curvature 6"'/. ·· · 

T T-fiT 

We have seen how 6"'/ is related to 68 and 6¢. For the small angle 6"{, we may calculate 
6G easily from the force diagram. Since 6T is very small, · 

6G ='= 2T sin(6'Y/2) ::::: TW"/) 

6G = T)cos2 ¢ + (~~ )2 68 

The force 6G is perperldicular to the segment of the loop, but may not be perpendicular 
to the surface of the cylind~r. To find its direction, we need more solid geometry. Let's flatten 
out a little rectangular pie~e of the cylinder, of width Me and just high enough to contain the 
little piece of the sling loop. 

Diagonal length = L 

The diagonal of the rectangle is drawn. The separation 6s between the loop and the dia
gonal may be found by letting the arc be part of a circle, and noting that 6¢ is small. 
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The radius of a curvature of the arc in this flattened area is: 

-L 
6l=&p 

-R.M 
cosif:J 6qJ 

& = tR(l-cos M) 
2 

cos M= 1- 1/2( M.. )2 + ... smaller terms. 
2 2 

/:::.1/J • 1 /2(_M__ )2 I- cos-2 -= 2 

t::.s = (1/2) dZ(...M!__ )2 = - R(M)(I:::.cJ>) 
2 8cos¢ 

Now put the rectangle back on the cylinder and roll it into its original shape. It will bow 
outward somewhat, by the amount 

1:::. q = (l/2) R(_M_ )2 

z 

Let us see what the rectangle looks like back in its position: 

of loop 

We get a little right triangle as indicated, when we draw a new straight line connecting the 
corners of the bent rectangle. T

1
his new line lies in the true plane of curvature of the short piece 

of loop. And more important, t~e angle a is just the angle between this plane of curvature and 
the local perpendicular to the cylindrical surface. We see that 

tan a = 
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R(.M)(t::.¢) 
8 cos 1/J 

tan a - 1 eM) 
cos ¢ d8 



Now we may resolve !:J.G, the force perpendicular to the loop segment in its plane of cur
vature, into two components, which will be perpendicular and parallel to the cylinder. These 
components appear as !:J.N and !:J.f, respectively, in the diagram below. 

Loop 

--
Both I:J.f and !:J.T are in the plane tangent to the cylinder. But !:J.N is perpendicular to this plane. 
The resultant force in the plane is the vector sum of 6f and 6T, and has the magnitude: 

.j(tJ.f)2 + (!:J.T)2 < p(I:J.N); J.l = coefficient of friction 

With the proper substitutions this equation will specify the form of the entire sling loop. 
Since we had 

M = !:J.G sin a 

tJ.N = t.G cos a 
!:J.G = T(!:J.-y) = t./cos2 8 + (~)2 !:J.() 

The l"t cqn•tion becomes, '1'"' substituting fo• these th,ce qu•ntitics •nd squ,ing, 

T2 
[ cos2 ¢ + (~)2 ](60)2 sin2 a + (6T)2 

.:;;; p2 T2 
[ cos2 ¢ + c-9!-- )2 ] (60)2 cos2 •tx 

We divide through by T2 and solve for (!:J.T/T)2 , and get 
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This differential equation ca·nnot yet be integrated to give T as a function of 8, because¢ is an 
'unknown function of 8. In fact, ¢ may not be uniquely determined by 8, so it may be possible 
for the loop to have a range of shapes, and still not slip. We are interested in only the worst case, 
however; the point at which the loop just fails to hold. For small values of Jl, corresponding_ to 
a slippery cylinder, the {irst radical becomes imaginary. The second radical is always real. Since 
it is not physically possible for bT/T to be imaginary, the equation shows us the value of J1 for 
which the loop slips. 

To keep bT/T real, so that the loop holds, we must set 

We note that bT/T is zero for the value of J1 which makes this expression zero. Thus a loop at 
the point of slipping has the same tension all the way around the cylinder. This is a way of 
saying that the loop has arranged itself so that all available friction is used to prevent slippage, 
and none is used to change the tension from place to place. 

We may write the same expression as 

I 
- -2-.;;;; P.2 + 1 
cos a 

I 

From geometry 

B.ut 

Then 

co~2 a = tan 2 a + 1, for any a 

tan a 
- 1 
cos¢ 

Right at the point of slipping t~ere is a unique case: 

_l_.Q.t_ _ ~-
cos· ¢ ( dO ) - sec ¢ ( dO ) - - J1 

or 

I sec¢ d; 

This is the differential equation for the shape of the loop just at the point of slipping. It may 
be integrated immediately. 

The result is 

log tan ( ; + ~ + C = -Jl 8 
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To determine the unknown constant, C, we use the fact that the sling is horizontal (¢=0) around 
back where 8=1T. 

Then 

But 

Therefore 

1T log tan (4 + 0) + C = - J.L 1r 

tan _I!_ = 1, and log 1 = 0 
4 

c = -J.L 7T 

The equation for cf> becomes 

log tan <-f- + +) = J.L(1T - 8) 

Or we may write ' 
.,-ta_n ____ c_; __ + __ 

2

_cp __ ) ___ e_J.L_(7T ___ 8-,) 

Or equivalently 

sin cf> = tanh [J.L(7r- 8)] 
I 

With this expression for ¢, it is straightforward to obtain the length of the loop by one more 
integration. The result is 

£ 2R sin~ J.L1T 

p. 

We will merely note that as J.L becomes small, the loop length must approach the cylinder's 
circumference as a limit, in order to hold. 

For our main purpose, we will apply the shape equation to the special point at 8=0, to 
find the limit rp= E. Since E is a maximum at the point of slipping, a loop with any value smaller 
than this will hold. Thus we get 

tan ( ..!!_ + ____f_ ) .:;;;; eJ.L1T 
4 2 

or sin E .:;;;; tanh J.L1T 

The transcendental equation just written gives either 
I. The maximum allowable angle € for a given coefficient of friction J.L. 
2. The minimum allowable friction p. for a specified junction angle €. 
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If the fixed loop were of smaller size, or if Jl were larger, then ¢ would not be a unique function 
of 8. Thus we might deform the loop to some slightly different shape, and it would still hold. 
But we ~re interested in the limit at which the knot just fails to hold. The importance of this 
case will become apparent as we make use of the results found so far. 

To do more, we must introduce some more facts about the physical situation. Instead of a 
fixed loop, we will consider a single half-hitch on the cylinder. We will find the equilibrium 
value of E for the half-hitch, and will compare it with the value found above to determine when 
the half-hitch is stable. 

Treatment of a Single HalfHitch 

To keep a single half-hitch from pulling open, we must apply the toosion z at the top, in a 
manner not yet specified. It is not hard to show that z is less than W, and to find the value 
which e will assume for this case. It will be noted that the knot will change its shape until a sta
ble value of e is found, and then the previous discussion will indicate whether the hitch will slip 
on the cylinder. 

In equilibrium at the junction, the horizontal components of the tensions are equal and op-
posite. The vertical components will balance, too, when · 

z + 2T sine= W 

So that the lower sling rope will not slip through the junction, we must have 

-JJ..: / 7r 
~-· --€) 

T = WeVl 2 

(This is just the formula for snubbing around a cylinder. The factor l/v'2 appears because the 
lighter rope crosses itself at an angle of 45° at the bend, regardless of e, and cos 45°.= 1/0.) 
The new coefficient of friction Jls is for sling rope against itself, rather than against the cylinder, 
and Jls need not equal Jl. 
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There is a third condition for equilibrium. So that the upper sling rope will not slip through the 
junction, we use the snubbing formula again and find 

·Jls 1r 

z = Te V2 <2 + e) 

When we put these last three equations together, we get 

We see that 

·J.I.s ( L + €) ·J.I.s ( 2... _ E) 
Te ~ 2 = z = W[l-2(sin e)e ..jT 2 ] 

·Jls ( 7r - E) 
[ I - 2 (sin c-)e VI 2 ] _ I_ 

r 

For all permissible pairs of e and J.Cs, the fraction 1/r is less than one. Thus the tension W below 
the knot has been reduced by the ratio r above the knot, to z. We'll come back to this. 

Using the rest of the equation above, and replacing T by its value in terms of W, we get 

·J.1.2 (...1I.... _ €) ....::&.._ (..1!. + €) ·J.I.s ( 7r ) 

We vff 2 e ..j1. 2 = w [1 - 2 (sin e) e VT 2 - € ] 

Divide out the W's and simplify. 

Solve for 

·Jls (2._ - E) 
[I - 2(sin e)e --;;'T 2 ] 

·J.Cs€ 
(sin e) e --;:12 = 

·Jls11" 

1-e~ 
~ 

2e y2 . 

Or we could write 

·J.I.sE 

( sin e ) e V2 - · nh ( J.l.ft - Sl -
2

-

This last equation specifies the single value of € which is permitted for any chosen sling friction 
J.Cs. The sling will slip on itself until this angle develops. 

Application of Equations to the Simplest Knot 

We have found two transcendental equations for the half-hitch: 

J.CsE 
(2) (sin e)e VI = sinh ( J.Csrr ) 

2ft 
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The first tells the lowest Jl we may have with a given e, and the second tells us what e will ac
tually be for a given sling friction Jls· So starting with knowledge of Jls for the sling material, we 
could find e by one equation, and then learn the lowest possible J1 from the other equation. 
That would be the slippery limit for gripping a cylinder. 

Transcendental equations cannot be solved in ordinary ways. Usually it is easiest to solve 
them graphically. . 

Putting the second equation first, we get the following pair of graphs for the solutions. 
(These were obtained with the help of preliminary graphs.) 

9QfJr--------..., 

00~------------~ 
0 1-/s ~ I. 

The shaded region indicates prohibited values. Values above it are allowed. 

To use these graphs you pick a sling friction Jls, read the first graph to find the angle Eat which 
the knot will form, and then irnd this e on the second graph to imd the range of permitted 
values of Jl. 

In fact, the graphs may be combined so that this information is found in one step. The re
sult is 

I. 

The curve is remarkably close to a straight line in this region~ Now under the condition that a 
sling alone is characterized by Jls, and that Jl is a joint property of your sling and the rope you 
want to climb, the condition we have found may be stated simply as: 

IJ.s must be less than 3Jl 
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So to climb slippery rope, it will actually be to your advantage to use slippery slings! This is the 
reason why new slings are easier to use than old, rougher ones. 

Discussion 

At first glance it appears rather easy to be sure that J.Ls is Jess than 3J.L, just by using slings of 
the same. material as the rope you are climbing. But it is not that simple because J.Ls is the coeffi
cient of static friction between two parts of the sling, and J.L is the coefficient of moving friction 
between the sling and the rope you are climbing. After all, you want to.stop after your knot has 
slipped a little. Since static friction may easily be two or three times aJ; great as sliding friction, 
the condition derived may not be easy to meet. 

But before we all go back to climbing ladders we should ask why certain values of J.L are 
prohibited, and what happens if we should try to use one. 

If your slings are too rough for a particular climb, the knots won't be self-adjusting. This 
is the difficulty. You could still make the climb, perhaps, by tightening a knot with your fingers 
each time you let go of it, but the knot wouldn't automatically constrict when you put weight 
on it. Beyond a second critical value of J.L , however, your climbing knot will not stay sufficiently 
snug even after being tightened by hand, and slippage will take place. 

With dry ropes it is almost impossible to fail to meet the condition on f-ls and f-l. Observed 
values of J.Ls range· from 0.28 for new nylon to 0.89 for well-used manila. Values of Jl, measured 
while moving, range from 0.26 for new manila on new nylon to about 0.6:5 for old manila on 
old manila. All of these combinations meet the condition, so observed difficulties in using dry 
climbing knots on dry ropes are caused entirely by knot stiffness rather than any failure to satis
fy the friction requirements. 

The condition we have derived can easily be made to fail on a main rope coated with mud. 
The problem is not at all simple, because mud comes in all concentrations, and very dilute mud 
may actually increase the friction , Jl, and make the climbing knot hold tighter. What generally 
happens, however, is that the film of mud on the main rope develops into a polished surface, 
with very low Jl. If the mud has affected the sling rope to a lesser extent, or in a different man
ner because of a different composition, then J1 may become less than Jls/3. Now measurements 
show that J.Ls for a manila sling rope will decrease somewhat as the rope is broken in, and then 
increase. Its lowest value will be about 0.3 for a fresh sling which has been used only enough to 
lose its stiffness, and the highest value will be about 0.9 for a veteran sling with rough surfaces 
and plenty of caked dirt. This range indicates that over the course of its lifetime, the absolute 
holding power of a manila sling will decrease by a factor of three, and near the end it will be 
capable of holding only clean ropes without help. 

From the figures given, nylon would appear to be a good sling material because it is slip
pery on the surface. But there is a major disadvantage to it. When tension is applied the nylon 
stretches, and the knot tightens. When t ension is removed the nylon shortens and swells. The 
swelling of the nylon makes most climbing knots tend to jam. In addition, nylon is a little too 
limp and is more trouble to slide upward. There is need for a strong, slippery, but non-elastic 
rope material for slings. If your patience is adequate, you may find nylon climbing knots useful 
for climbing a very muddy rope, when manila knots won't hold. Otherwise, they are a nuisance. 

Application to Higher Knots 

Now that we have seen how internal friction can affect the holding power of a knot, .it 
shouldn't be surprising that most of the popular climbing knots represent the various ways of 
getting around this difficulty. Each can be understood a little better in light of the calculation 
for the half-hitch. 
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The most familiar and most dependable climbing knot is the prusik knot. The lower half of 
,it is much like the half-hitch we have been discussing, except that there is an extra tum. 

As before, z is less than W by a ratio controlled exponentially by Jl . With the two loops the 
ratio is approximately R=r2 , since the tension at the top of the first loop is diminished again by 
the same ratio. (A third loop would not, however, be much improvement.) We find that the 
ratio R is increased by some other features as well. Where the vertical parts meet, there is some 
pinching of the inner tum against the main rope. The part of the knot connecting upper and 
lower halves serves two purposes. First, it provides the tension z , arising from the drag of the up
per two turns on the main rope. Second, it pulls all four turns together to make € smaller than 
the value it would have with a,half-hitch in equilibrium. When this happens, the condition on Jl 
becomes less demanding, and it is possible to climb on a more slippery rope. (see graph of Jl 
against e.) 

If you have trouble making a prusik knot grip, it will help to adjust things to increase the 
tension in the lower part of the knot (b) and decrease the tension in the upper part (a). In fact, 
the upper end (a) could just as well be entirely loose. 

Another climbing knot sometimes used is formed by wrapping the sling around the main 
rope in a criss-crossing fashion. In this case we refer back to the treatment of the fixed loop. An
gle E is determined as soon as this climbing knot is tied, and then the minimum permissible value 
·of Jl may be obtained from the first of the differential equations. In this case tJ> will be zero not 
for 8=rr, but for() equal to some odd multiple of rr. In the picture , tJ> is zero when 8=3. Thus Jl 
cannot be found directly from the graph. But we see from the equation that Jl is effectively mul
tiplied by n when the sling encircles the main rope (or the cylinder) n times, as compared with 
the single fixed loop first studied. There are then two important advantages: a rather small val
ue of e may be used in each turn , and 11 is multiplied by the number of turns. Since the holding 
power is exponential in Jl, the holding power of a knot with n turns will go roughly as rn. I say 
"roughly" because the sling will tend to stick to itself at the points of crossing, and will not 
readily conform to the most efficient shape. This knot can lose its form more easily than a pru
sik knot would, and it may slip unexpectedly. 

Other knots have been constructed on this general design, some having the sling rope dou
bled as it winds around the main rope. Because the knot is loose and open, it may be tied with 
some types of nylon sling material without extreme jamming. 
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n=3 

w 

A while ago the ratio 

-Jls 7r 
z -n c- -e) 

- = 1-2(sine)e y2 2 
w 

_1_ 
r 

hitches 

· was derived for the half-hitch. Now in the unhappy limit when 1-ls and /.1 are very small, E also 
will be small. We may then say approximately, 

e,;, Jl'Tr, sine ,;, e ,;, Jl'Tr 

~ (....E_:.. E) 
Jls = 2-jfji, -e ...j2 2 -

1 
1- 2!-ltr(l - /.11T) = I - 2!-l1T + - 2rrJl 

- e r 

z . -2rr!-l 
w = e < I 

We now see that the ratio z/W is less than one for any possible Jl. The form of the last expres
sion happens to be ~:lentieal to the familiar snubbing formula. The te nsion reduction with the 
half-hitch, in the limit when /.1 is made small, is just the reduction which would be found if a 
length of sling rope were snubbed one full tum (2rr) around the main rope (or cylinder). 

If we now set up several half-hitches in tandem, then 

1 
r = Z J 

w 

Zn 
Zn- 1 

Thus with n half-hitches, the ratio obtained is the product of these, or 

2!:!._ (- 1- )n = e- 2trJln = 1 
w r R 
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Even with a small value of p., the product (np.) may be large enough so that the knot holds well. 
All we have to do is find a way to provide that final small t ension zn at the· top, so that the total 
knot will keep its shape. This is done just by adding one more half-hitch. The drag it provides 
will be enough, if the necessary zn has been made small. To get rid ofthe upper end, entwine it 
with the loop of the last half-hitch. Do NOT tie it to the lower end of the sling, as a pull on the 
top of the knot can cause it to slip. 

As a practical suggestion, make alternate half-hitches mirror images of each other, to cancel 
out their tendency to twist on the rope. When this is done, the knot will keep its shape well. 

Try this knot sometime when you are experimenting with ropes. It may save you the 
shame of a rescue someday when your main rope is muddy and nothing else will hold. It is less 
conve::nient to use than a prusik knot, and takes up more room, but by adding turns, you can 
make it grip anything. . 

Along this line, two prusik knots properly tied in tandem will hold (!)n nearly anything. The 
upper end is just left free . (See next page.) In a typical case the drag pro~ided by the upper half 
of a prusik knot may be only one pound. If the ratio of a half-knot is R=20, then the entire 
knot might support only 20 pounds. But two knots in tandem would si1pport lx20x20x20, or 
8000 pounds. The rope would break before the knots could slip! 

Either of these combination knots, the running half-hitch or the tandem prusik knot, could 
eliminate most of the vertical cave rescues made necessary by slippery itopes. I've used the tan
dem prusik knots to climb a 30-foot piece of brand new quarter inch nylon rope, with slings 
made of 3/8-inch manila. The knots were in no danger of slipping: they were even a little hard 
to move. 

In these cases we gain remarkable gripping power by making use of the fact that the mech
anical advantage of climbing knot is multiplicative, and not merely additive. 

As with all aspects of vertical rigging, it is a good idea to try out knots like these while you 
are above ground. Learn what they will do for you, and what their limitations are, before you 
use them in a cave. 

The assumptions made initially are worth a short note. First, we called the main rope a 
smooth, rigid cylinder. Its lack of rigidity and its structure will be of some help in holding a 
climbing knot. The depression of the rope under the constriction of the knot will increase p.. 
Second, the sling material was considered to be ideally limp, weightless, and non-twisting. Its 
weight is negligible, and each .popular knot design is arranged to cancel the effects of twisting. 
You recall that in the running half-hitch, the alternate loops are made mirror images of each 
other for this purpose. But it is well known that sling rope is not very limp, until has been "bro
ken in". If the sling is stiff, it will not contact well along the entire angle assumed, and the result 
will be a decrease in the effective value of }J., and perhaps a loss of grip. The stiffness begins to 
become important when you bend the sling rope about a radius comparable to its own. To a
void this, use a sling rope a size or two smaller than your main rope, so that the bending radius 
is proportionately larger. Both 5/16-inch and. 3/8-inch slings work well on l/2-inch rope. 

The stiffness consideration does not change the discussion of the half-hitch where it cross
es itself, for there the ropes cross at 45°, and the effective radius of bending is twice the radius 
of the rope. In any case, a little stiffness would be an advantage here. 

There isn't space to discuss the method of prusik climbing, and our concern has been en
tirely with knots which can be used. The method has been developed to great efficiency, and is 
actually easier than ladder climbing over a long distance . The central idea is to balance properly 
so that your legs do all the work of climbing and your arms do almost nothing. This efficiency 
requires slings of exactly the right lengths for you, and these may be calculated from the formu
las in the June 1962 NSS NEWS, page 70. Other information may be found in back issues of the 
Baltimore Grotto News or the January 1966 NSS BULLETIN. 
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